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Localized X-shaped field generated by a superluminal electric charge
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It is now well known that Maxwell equations admit of wavelet-type solutions endowed with arbitrary group
velocities (0,vg,`). Some of them, which are rigidly moving and have been called localized solutions,
attracted large attention. In particular, much work has been done with regard to the superluminal localized
solutions ~SLSs!, the most interesting of which are the ‘‘X-shaped’’ ones. The SLSs have been actually
produced in a number of experiments, always by suitable interference of ordinary-speed waves. In this paper
we show, by contrast, that even a superluminal charge creates an electromagnetic X-shaped wave: namely, on
the basis of Maxwell equations, we are able to evaluate the field associated with a superluminal charge~under
the approximation of pointlikeness!: It results in constituting a very simple example of atrue X wave.
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I. INTRODUCTION

It is well known that Maxwell equations have been sho
to admit of wavelet-type solutions endowed with arbitra
@1# group velocities 0,vg,`. Some of them, which are
rigidly moving and have been called ‘‘localized solutions
attracted much attention@2#. In particular, much work has
been done with regard to the superluminal localized so
tions~SLS’s!, the most interesting of which—as predicted
special relativity~SR! itself @3#—are the ‘‘X-shaped’’ ones
@4#. Such X-shaped SLSs have been actually produced
number of experiments@5#.

The theory of SR, when based on theordinary postulates
but not restricted to subluminal waves and objects, i.e., in
extended version@6#, predicts the simplest X-shaped wave
be the one corresponding to the electromagnetic field cre
by a superluminal1 charge@8,9#. Evaluating the field associ
ated with a superluminal electric charge is of utmost imp
tance not only as a contribution to the theory of the X-sha
waves, but also as a starting point for studying the elec
magnetic interaction of a charged ‘‘tachyon’’ with ordina
matter~and planning, may be, the construction of a suita
detector!.

II. THE TOY MODEL OF A POINTLIKE SUPERLUMINAL
CHARGE

Let us first start by considering, formally, a pointlike s
perluminal charge, even if the hypothesis of pointlikene
~already unacceptable in the subluminal case! is totally inad-
equate in the superluminal case, as it was thoroughly sh
in Refs.@8#.

Then, let us consider the ordinary vector potentialAm and

*Email address: recami@mi.infn.it
1Incidentally, let us recall that theluminal case was successfull

examined by Bonnor@7#, who showed the Maxwell equations t
admit of finite-energy solutions even in the limiting case of a~mass-
free! ‘‘particle’’ carrying equal amounts of positive and negativ
electric charge.
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a current densityj m[(0,0,j z ; j 0) flowing in thez direction.
On assuming the fields to be generated by the sources o
one has thatAm[(0,0,Az ;f), which, when adopting the
Lorentz gauge, obeys the equationhAm54p j m/c. Such a
nonhomogeneous wave equation, in cylindrical coordina
(r,u,z;t) and for axial symmetry@which requiresa priori
that Am5Am(r,z;t)], can be written as2

F2r
]

]r S r
]

]r D1
1

g2

]2

]z2
1

1

g2

]2

]h2
24

]2

]z ]hGAm~r,z,h!

5
4p

c
j m~r,z,h!, ~1!

provided that3 we go on to the new ‘‘V-cone variables’’@11#,
with V2.c2:

z[z2Vt,

h[z1Vt. ~2!

In Eq. ~1!, it is Am[(0,0,Az ;f); quantitym assumes the two
valuesm53,0 only; and@6#

g25
1

V221
. ~18!

Let us now supposeAm to be independent ofh, so that
Am5Am(r,z). Due to Eq.~1!, we shall havej m5 j m(r,z)
too; and thereforej z5V j0 ~from the continuity equation! and

2As a further check of our calculations, we started also from
so-called scalar Bromwich-Borgnis@10# potentialu, under the hy-
pothesis thatj5(0,0,j z), in which case it isEr5]2u/]r,]z; while
Ez52]2u/]t21]2u/]z2; and Bf5]2u/]r ]t, where t5ct. On
defining the functionc[Az[]u/]t, we showed by Maxwell equa
tions thatc has to obey the same nonhomogeneous~axially sym-
metric! wave equation~1!, with m53.

3In the following we shall putc51, whenever convenient.
©2004 The American Physical Society02-1
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Az5Vf/c ~from the Lorentz gauge!. Then, by callingc
[Az , so thatf5cc/V, Eq.~1! yields the hyperbolic equa
tion

F2
1

r

]

]r S r
]

]r D 1
1

g2

]2

]z2Gc~r,z!54p j z~r,z!. ~3!

One can notice that the procedure leading to Eq.~3! consti-
tutes a simplegeneralizationof the theorem by Luet al. @12#
to nonhomogeneous equations, i.e., to the case with sou
@13#.

Let us finally analyze the possibility and consequences
having a superluminal pointlike chargee, traveling with con-
stant speedV along thez axis (r50) in the positive direc-
tion:

j z5eV
d~r!

r
d~z!. ~4!

To solve Eq.~3! with j z given by Eq.~4!, let us apply~with
respect to the variabler) the Fourier-Bessel~FB! transfor-
mation of a function f (x) into function F(V): f (x)
5*0

`VF(V)J0(Vx)dV, and F(V)5*0
`x f(x)J0(Vx)dx,

quantityJ0(Vx) being the ordinary zero-order Bessel fun
tion. After some calculations, one gets the equation

F 1

g2

]2

]z2
1V2GC~V,z!54peVd~z!. ~5!

By applying subsequently the ordinary Fourier transform
tion with respect to the variablez ~going on, fromz, to the
variablev), after some further manipulations we obtain

C~V,v!54peV
g2

g2V22v2
. ~6!

Finally, the solution of our equation is got by performin
the correspondinginverseFourier and FB transformations:

c~r,z!5A8peVg2E
2`

`

dvE
0

`

dV
VJ0~Vr!e2 ivz

g2V22v2
, ~7!

which, on using formulas~3.723.9! and ~6.671.7! of Ref.
@14#, yields

c~r,z!50 for 0,guzu,r,
~8!

c~r,z!5A8pe
V

Az22r2~V221!
for 0<r,guzu.

In Fig. 1 we show such a solutionAz[c as a function ofr
andz, evaluated forg51 ~i.e., for V5cA2).

For comparison, one may recall that theclassical
X-shaped solution@4# of the homogeneouswave equation
has the form@11# ~with a.0)

X5
V

A~a2 i z!21r2~V221!
. ~9!

In the second one of Eqs.~8! it enters expression~9! with the
spectral parameter@11# a50, which indeed corresponds t
02760
es
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the nonhomogeneous case~the fact that fora50 these equa-
tions differ for an imaginary unit will be discussed els
where!.

It is rather important, at this point, to notice that such
solution, Eq.~11!, represents a wave existing only inside t
~unlimited! double coneC generated by the rotation aroun
thez axis of the straight linesr56gz: This is in full agree-
ment with the predictions@15# of the ‘‘extended’’ theory of
special relativity@6#.

III. EVALUATING THE FIELDS GENERATED BY THE
SUPERLUMINAL CHARGE

Once solution~8! for the ‘‘potential’’ c has been found,
we can evaluate the corresponding electromagnetic fie
The standard relationsE52“f2]A/]t andH5“3A im-
ply in the present case@c5c(r,z)[Az ; and f5c c/V]
that, when 0<r,guzu ~i.e., inside the coneC ), the fields
become4

Er52A8per
V221

A@z22r2~V221!#3
, ~10a!

Ez52A8pez
V221

A@z22r2~V221!#3
, ~10b!

Hf52A8per
V~V221!

A@z22r2~V221!#3
, ~10c!

where, let us recall,z[z2Vt, with V2.c2. We show in Fig.
2 the direction of the various field components in our co

4It should be noted that the same results are obtained when s
ing from the four-potential associated with a subluminal cha
~e.g., an electric charge at rest!, and then applying to it the suitabl
superluminal lorentz ‘‘transformation’’@6#.

FIG. 1. Behavior ofAz[c as a function ofr and ofz[z2Vt
evaluated forg51 ~i.e., for V5cA2). ~Of course, we skipped the
points in whichAz must diverge, namely, the vertex and the co
surface!.
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dinates; while the behavior ofEz , as a function ofr andz,
is shown in Fig. 3.

However, outside the coneC, i.e., for 0,guzu,r, one
gets, as expected, that

Er5Ez5Hf50. ~10d!

One faces therefore a field discontinuity when cross
the double-cone surface, since the field is zero outside
Nevertheless, the boundary conditions imposed by Maxw
equations@15# are satisfied by our solution~8! or Eqs.~10a!–
~10c!, since at each point of the cone surface the electric
the magnetic field are both tangent to the cone: We s
discuss this point below.

Let us here emphasize that, whenV→`,g→0, the elec-
tric field tends to vanish, while the magnetic field tends
the valueHf52A8pe/r2. This does agree with what i
expected from extended relativity@9#, which predicts super-
luminal charges to behave, in a sense, as magnetic m
poles. In the present paper we can only mention such a
cumstance, and refer to Refs.@3,9#, where it is shown that, if

FIG. 2. Depicted here is the direction of the various field co
ponents, in our coordinates.

FIG. 3. Behavior of thez component of the electric field gene
ated by a superluminal~pointlike! charge as a function ofr andz,
with the same parameters as used for Fig. 1.~Once again, we
skipped the points in whichEz has to diverge, namely, the verte
and the cone surface!.
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one callselectric the ‘‘electromagnetic charge’’ when it is
subluminal, then he should call itmagnetic when
superluminal5 ~cf. Fig. 46 at page 155 of Ref.@6~a!#!. Actu-
ally, result ~8! can be obtained in a quicker way just b
applying a superluminal lorentz ‘‘transformation’’@6# to the
fields generated by a subluminal~in particular, at rest! elec-
tric point charge.

Let us add that—as mentioned at the end of the preced
section—extended relativity predicts, e.g., that the spher
equipotential surfaces of the electrostatic field created b
charge at rest get transformed~by a superluminal lorentz
transformation! into two-sheeted rotation hyperboloids, co
tained inside an unlimited double cone@6,8#: see Fig. 4. One
ought to notice, incidentally, that this double cone does
have much to do with the Cherenkov cone: In fact, t
double cone is associated with a constant-speed superlum
charge even in the vacuum, while Cherenkov radiation em
sion is induced by a fast electric charge only out of a mate
medium. Moreover~cf. also Fig. 27 at page 80 of Ref.@6~a!#!
a superluminal charge traveling at constant speed, in
vacuum, e.g., doesnot lose energy@8#.

Let us go eventually back to the problem where one fa
a field discontinuity across the double-cone surface@see Eqs.
~10a!–~10c! and Eqs.~10d!#, since the field is zero outsideC;

5We have shown elsewhere@9,16# that a superluminal chargee
and a superluminal currentj m are pseudoscalar and pseudovect
respectively: Just as in the case of a magnetic charge and a
netic current; so that they should rather be written asg5e andg5 j m.
But in this paper we shall forget about the symmetry properties
those quantities.

-

FIG. 4. The spherical equipotential surfaces of the electrost
field created by a charge at rest get transformed into two-she
rotation hyperboloids, contained inside an unlimited double co
when the charge travels at superluminal speed~cf. Refs.@6,8#!. This
figure shows, among others, that a superluminal charge travelin
constant speed, in a homogeneous medium such as the vac
does not lose energy@8#. Let us mention, incidentally, that this
double cone has nothing to do with the Cherenkov cone~see the
text!. The present picture is a reproduction of Fig. 27 of our ear
work @6#.
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for r→guzu fields ~10a!–~10c! even diverge. Nevertheles
one can straightforwardlyverify that our solution~8!, or Eqs.
~10a!–~10d!, satisfies the following boundary conditions, r
quired by Maxwell equations in the present case of amoving
boundary@17,18#:

~Eext2Eint!•n̂5s,

~Hext2H int!•n̂50,

~Eext2Eint! tan52~ n̂•V!n̂3~Hext2H int!,

@12~ n̂•V!2#n̂3~Hext2H int!5 j. ~11!
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